
REGULAR ARTICLE

Intermolecular exchange-induction energies without overlap
expansion
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Abstract An approach to evaluate the second-order

exchange-induction energies of symmetry-adapted inter-

molecular perturbation theory (SAPT) for single-determi-

nant ground-state monomer wavefunctions has been

derived. This approach is correct to all orders of the

intermonomer overlap, that is, it takes multiple electron

exchange between the monomers into account. The

resulting formulae can be written in a compact way and

implemented efficiently. Here, the method is employed to

investigate the performance of the S2- or single-exchange

approximation at the Hartree-Fock-SAPT level. The list of

test systems comprises the prototypical van der Waals- and

hydrogen-bridge complexes Ne2, Ar–HF, and (H2O)2, but

also the systems HeCl-, NeNa? and Li?F- involving

closed-shell ions. It was found that the errors introduced by

the S2-approximation are more pronounced for the second-

order exchange-induction energy than for the first-order

exchange energy. While these errors tend to be negligible

throughout the well region of complexes such as the neon

dimer, they start to be significant in the repulsive part of the

well regions of systems such as the water dimer, and in

particular for the ionic lithium fluoride molecule. The

consequences of these findings for the Hartree-Fock level

estimate of higher-order induction plus exchange-induction

energies, which is frequently employed in SAPT are also

discussed.
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1 Introduction

Symmetry-adapted perturbation theory (SAPT) has been

developed as an alternative to supermolecular methods for

the calculation of weak intermolecular interactions [1–3].

Up to second order in the interaction potential, this ansatz

results in a splitting of the total interaction energy into first-

order electrostatic and second-order induction and disper-

sion parts, accompanied by exchange corrections that arise

from the antisymmetry of the total wavefunction:

Eint ¼ E
ð1Þ
el þ E

ð1Þ
exch þ E

ð2Þ
ind þ E

ð2Þ
exch�ind þ E

ð2Þ
disp þ E

ð2Þ
exch�disp:

ð1Þ

Practical implementations of SAPT that account for the

important intramonomer electron correlation effects on the

interaction energy employing multi-determinant ground-

state wavefunctions have first been made in the framework of

many-body symmetry-adapted perturbation theory (MB-

SAPT) [4–6].

In a multi-determinant approach, the calculation of the

exchange corrections is somewhat involved due to the non-

orthogonality of the orbitals of the respective monomers, a

problem that in an approximation for the first-order

exchange contribution was circumvented by Rijks, Gerrit-

sen, and Wormer through a hole-particle orbital orthogo-

nalization [7]. In the framework of SAPT, the so-called

single-exchange or S2-approximation was introduced early

on [8–11]. It includes only terms up to the second order of
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the intermonomer overlap. For single-determinant Hartree-

Fock descriptions of the interacting monomers, it was

shown that the resulting second-order exchange contribu-

tions can be written as Coulomb interactions between

overlap intermolecular charge distributions [12]. To the

best of our knowledge, no systematic study of the perfor-

mance of the S2-approximation for second-order exchange

energies has been published so far, with the notable

exception of a study of the helium dimer by Korona et al.

[13] using correlated monomer wavefunctions. The calcu-

lations on the helium dimer, however, confirm the earlier

suggestions that the S2-approximation is an excellent

approximation except for very small distances between the

monomers. Thus, it is expected that in most cases, the

quality of the well region of intermolecular potential

energy surfaces is hardly diminished by the S2-approxi-

mation, and this is the region of interest in most SAPT

studies of non-covalently bound systems.

More recently a second possibility to account for intra-

monomer electron correlation effects on the intermolecular

interaction energy has been opened up through combining

Kohn-Sham density functional theory (KS-DFT) with

SAPT, leading to the DFT-SAPT [14–19] or, equivalently,

SAPT(DFT) [20–26] methods. Within these approaches, the

ground-state density of each monomer is obtained from a

single-determinant wavefunction. As is well known, this

wavefunction describes a pseudo-particle system—and not

a true electronic system—chosen such that its density is

exactly that of the corresponding electronic system. Simi-

larly, the first-order correction to the ground-state wave-

function of the pseudo-particle system delivered by solution

of the static and frequency-dependent coupled-perturbed

Kohn-Sham equations is only guaranteed to reproduce the

linear change in the ground-state density of the true elec-

tronic system correctly. Therefore, the exchange contribu-

tions to SAPT interaction energies will not be exact in DFT-

SAPT and SAPT(DFT) [14]. Nevertheless, a growing body

of evidence shows that the replacement of the true elec-

tronic wavefunction and its perturbation wavefunctions

with corresponding Kohn-Sham quantities is a good

approximation in the framework of SAPT: in many cases,

the resulting interaction energies rival the accuracy of the

current gold standard in quantum chemistry, that is, single-

and double-excitation-coupled cluster theory with pertur-

bative triple excitations (CCSD(T)), as exemplified in Refs.

[18, 27–30].

The first correction to the S2-approximation of Eexch
(1)

containing terms of order S4 has been derived and tested by

van Duijneveldt-van de Rijdt and van Duijneveldt for the

case of a single-determinant Hartree-Fock (HF) description

of the monomers [31]. Furthermore, an exact single-

determinant expression for Eexch
(1) containing all orders of

S has been given by Jeziorski, Bulski, and Piela [32]. In

fact, this approach has regularly been employed in both

MB-SAPT and DFT-SAPT. The determination of second-

order interaction energy contributions requires singly and

doubly excited determinants if the ground state of each

monomer is a single determinant. Matrix elements involving

the full Hamilton operator of the dimer and antisymmetrized

products of monomer non-, singly-, and doubly-excited

determinants have been derived and employed in an inter-

molecular perturbation theory variant by Hayes and Stone

[33, 34]. These matrix elements, which account for all orders

of S, have been generalized to arbitrary excitation levels by

Figari and Magnasco [35]. They are related to the matrix

elements needed in a SAPT approach but do not exactly

correspond to them: the latter exclusively involve the Cou-

lomb interaction operators for all particles of one monomer

with the particles of the other monomer.

In this paper, we will present an efficient approach to

determine the second-order SAPT exchange-induction con-

tribution Eexch–ind
(2) without the S2-approximation for single-

determinant ground-state wavefunctions, taking electronic

response into account at the coupled-perturbed Hartree-Fock

(CPHF) level. With this, here, we will investigate the quality

of the S2-approximation of exchange–induction energies for

six small, yet representative cases: (1) the Ne dimer as a

prototype van der Waals complex, (2) the Ar–HF complex

combining non-polar and polar monomers, (3) the water dimer

as a prototype for hydrogen-bridged systems, (4) the complex

HeCl- combining a compact rare-gas atom with a diffuse

anion, (5) the system NeNa? which is isoelectronic to Ne2, and

(6) the LiF molecule as an example for a system with a strong

ionic bond.

Besides potential applications in DFT-SAPT, the pre-

sented approach is also useful for determining the so-called

d(HF)-approximation for higher-order induction and

exchange-induction contributions [36, 37] on a more

accurate level. This approximation is defined as

dðHFÞ ¼ EHF
int � E

ð1Þ
el ðHFÞ � E

ð1Þ
exchðHFÞ � E

ð2Þ
indðHFÞ

� E
ð2Þ
exch�indðHFÞ; ð2Þ

where Eint
HF is the supermolecular interaction energy as

calculated on the counter-poise-corrected (CP-corrected)

[38] Hartree-Fock level and the other contributions on the

r.h.s. are the standard SAPT interaction energy contributions

as determined from the HF determinant (for the first-order

contributions) and the linear CPHF wavefunction (for the

second-order contributions), respectively. Note that the use

of the d(HF) contribution for the calculation of an improved

SAPT interaction energy as

~Eint ¼ Eint þ dðHFÞ ð3Þ

has been criticized on theoretical and pragmatic grounds:

first one should note that Eint
HF as a supermolecular energy
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contains contributions, which are absent in SAPT, and

second, it was observed that while employing d(HF) for

hydrogen-bonded systems improves the interaction ener-

gies, it has an adverse effect on pure van der Waals systems

such as rare-gas dimers [39, 40]. Here, we will not go into

the second question but rather investigate the effect of the

S2-approximation on the behavior of d(HF) with decreasing

distance between the monomers. One should note that the

addition of the d(HF) to SAPT energies results in a hybrid

method where essentially electron correlation effects on the

interaction energy are added on top of a supermolecular HF

interaction energy—an approach that may be preferable

over non-hybrid SAPT for convergence reasons at

small intermolecular distances where the mutual pertur-

bation of the molecules is large. In this contribution,

we will limit our attention to interaction energies with-

out electron correlation contributions, that is, omitting

Edisp
(2) and Eexch–disp

(2) from Eq. (1) and using HF and CPHF

descriptions of the interacting monomers. We will denote

the corresponding Eint as HF-SAPT interaction energies.

The outline of the paper is as follows: in the next sec-

tion, an overview of the formalism will be given, followed

by a section, collecting a brief discussion of some aspects,

implementation and the computational details of our cal-

culations. The results are presented and discussed next.

Finally, some general conclusions and an outlook will be

given.

2 Theory

In SAPT, the first-order interaction energy reads

Eð1Þ ¼ E
ð1Þ
el þ E

ð1Þ
exch ¼

hwA
0 wB

0 jV̂Âjw
A
0 wB

0 i
hwA

0 wB
0 jÂjw

A
0 wB

0 i
; ð4Þ

where w0
A and w0

B are the ground-state wavefunctions of the

isolated monomers A and B, respectively. The perturbation

operator V̂ collects the Coulomb interactions of all electrons

and nuclei of monomer A with those of B, and Â denotes the

antisymmetrizing operator for all N = NA ? NB electron

indices. Approximating the exact ground-state wavefunctions

with single normalized Slater determinants UA
0 and UB

0

composed of occupied spin-orbitals vi and vj, respectively,

computation of the first-order energy requires the matrix

elements hUA
0 UB

0 jÂjUA
0 UB

0 i and hUA
0 UB

0 jV̂ÂjUA
0 UB

0 i. The

evaluation of these matrix elements is known [32] and its

results are only briefly repeated here to introduce our notation.

Defining the overlap matrix S composed of the matrix

elements

Srs ¼ hvrjvsi; ð5Þ

where r and s label general occupied orbitals (irrespective

on their location either on monomer A or B), one obtains

hUA
0 UB

0 jÂjUA
0 UB

0 i ¼
NA!NB!

N!
det S ¼ NA!NB!

N!
S: ð6Þ

Defining

Ajr ¼ hvjjvAjvri; ð7Þ

Bir ¼ hvijvBjvri; ð8Þ

where vA and vB are the Coulomb potentials of the nuclei of

monomers A and B, respectively, one further gets

hUA
0 UB

0 jV̂ÂjUA
0 UB

0 i

¼ NA!NB!

N!
WABS þ

X

i

X

r

BirSir þ
X

j

X

r

AjrSjr

 

þ
X

i

X

j

X

r

X

s [ r

hijjjrsiSij;rs

!
; ð9Þ

where WAB denotes the Coulomb interaction energy

between the nuclei of monomers A and B and hijjjrsi an

antisymmetrized two-electron integral in physicicsts’

notation [41]. The symbol
P

i stands for summation over

the occupied orbitals of monomer A,
P

j means summation

over the occupied orbitals of monomer B, and
P

r and
P

s

denote summation over all occupied orbitals. The second

cofactors Sij;rs are obtained by deleting rows i and j and

columns r and s in det S and multiplying the resulting

subdeterminant with (- 1)i?j?r?s. Their definition is

generalized to the cases i [ j and r [ s through

requesting Sij;rs ¼ �Sji;rs and Sij;rs ¼ �Sij;sr . They are

related to first cofactors Sir (obtained by deleting row

number i and column r and multiplying the corresponding

subdeterminant with (-1)i?r) through a Jacobi identity [42]

Sij;rs ¼ 1

S ðS
irSjs � SisSjrÞ: ð10Þ

Noting that

Sir ¼ SDri; ð11Þ

where Dri is an element of the inverse of the overlap matrix

D = S-1, the first-order energy becomes

Eð1Þ ¼ WAB þ
X

i

X

r

BirDri þ
X

j

X

r

AjrDrj

þ 1

2

X

i

X

j

X

r

X

s

hijjjrsiðDriDsj � DsiDrjÞ; ð12Þ

where further simplifications are possible due to the anti-

symmetry of hijjjrsi. Subtracting the electrostatic contri-

bution Eel
(1) from Eq. (12) one explicitly obtains Eexch

(1) .

The second-order induction plus exchange-induction

energy in SAPT reads
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E
ð2Þ
Ind ¼ E

ð2Þ
ind þ E

ð2Þ
exch�ind ¼

hwA
0 wB

0 jðV̂ � Eð1ÞÞÂjWð1Þindi
hwA

0 wB
0 jÂjw

A
0 wB

0 i
; ð13Þ

where the first-order induction wavefunction is given by

Wð1Þind ¼ Wð1Þind;A þWð1Þind;B ¼ �ðR̂
A

0 þ R̂
B

0 ÞðV̂ � Eð1ÞÞwA
0 wB

0 ;

ð14Þ

and R̂
A

0 and R̂
B

0 are the reduced ground-state resolvents of

monomers A and B, respectively. In the framework of

Hartree-Fock theory, the first-order induction wavefunction

corresponding to polarization of monomer A is obtained

from solving the coupled-perturbed Hartree-Fock equations

as

Wð1Þind;A ¼
X

i

X

a

CiaU
A
i!aU

B
0 ; ð15Þ

where UA
i!a denotes a singly excited Slater determinant with

orbital vi replaced by a virtual orbital va, and Cia are the CPHF

coefficients as obtained with the electric potential of monomer

B as a perturbation. A similar equation holds for Wð1Þind;B.

Thus, computation of the second-order induction energy

requires matrix elements like hUA
0 UB

0 jðV̂ � Eð1ÞÞÂjUA
i!aU

B
0 i.

Introducing the determinant Si!a that differs from S by

replacing the elements Sri in the ith column with

Sra ¼ hvrjvai, some algebra involving expansion of

determinants into first and second cofactors as

Si!a ¼
X

r

Sr!aSri;

Srs
i!a ¼

1

S ðSi!aSrs � Ss!aSriÞ;

Srs;tu
i!a ¼

1

S ðSi!aSrs;tu � St!aSrs;iu � Su!aSrs;tiÞ

ð16Þ

leads to

hUA
0 UB

0 jðV̂ � Eð1ÞÞÂjUA
i!aU

B
0 i

¼ NA!NB!

N!

X

i0
ðBi0a �

X

r

Bi0r
Sr!a

S ÞS
i0i

 

þ
X

j

ðAja �
X

r

Ajr
Sr!a

S ÞS
ji

þ
X

i0

X

j

X

s

ðhi0jjjasi �
X

r

hi0jjjrsi Sr!a

S ÞS
i0j;is

!
;

ð17Þ

where Aja and Bi0a are the obvious generalizations of (7)

and (8), respectively. Noting that

Sia ¼ S
X

r

DirSra ¼ S
X

j

DijSja; ð18Þ

where the last equation holds since a virtual orbital at

monomer A can at most have an overlap with occupied

orbitals of B, making use of (10,11) and introducing the

definitions

Tra ¼
X

j

DrjSja; ð19Þ

~Bi0a ¼ Bi0a �
X

r

Bi0rTra; ð20Þ

~Aja ¼ Aja �
X

r

AjrTra; ð21Þ

h gi0jjjasi ¼ hi0jjjasi �
X

r

hi0jjjrsiTra ð22Þ

we thus get

hUA
0 UB

0 jðV̂ � Eð1ÞÞÂjUA
i!aU

B
0 i

hUA
0 UB

0 jÂjUA
0 UB

0 i
¼ Xia ¼

X

i0

~Bi0aDii0 þ
X

j

~AjaDij

þ
X

i0

X

j

X

s

ghi0jjjasiðDii0Dsj � DijDsi0 Þ: ð23Þ

The modified one- and two-electron matrix elements

occurring in this expression correspond to a replacement of

the virtual orbital va with a modified virtual orbital

~va ¼ va �
P

r vrTra. Similar equations can be derived for

the matrix elements stemming from Wð1Þind;B. With these, one

obtains E
ð2Þ
Ind ¼

P
ia CiaXia þ

P
jb CjbXjb, from which the

second-order exchange-induction energy is finally obtained

through subtraction of Eind
(2) .

3 Implementation and computational details

The above formalism in a spin-summed closed-shell form

has been implemented into the SAPT routines of a devel-

opment version of the MOLPRO program [43]. The program

has been checked by comparing matrix elements as deter-

mined with the above formalism to the outcome of a simple

test program in which the matrix elements were evaluated

from explicit permutation of orbital products. Clearly, due

to the factorial increase of the latter method this is only

possible for cases with few electrons, such as He2 and

HeBe. In contrast, the formalism of Sect. 2 is much more

efficient: as it stands, it scales no worse than N5, where N is

a measure of the system size. This is also the formal scaling

behavior of the expression for the S2-approximated

exchange-induction energy as derived in [11]. Steps scaling

as N5 are the transformation of two-electron integrals over

atomic orbital (AO) basis functions to integrals over

molecular orbitals (MOs) and the preparation of the mod-

ified two-electron integrals according to Eq. (22). The latter

can alternatively be generated by slightly modified two-
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electron integral transformation routines using pseudo-MO

coefficients for the modified virtual orbital ~va. The

unmodified two-electron integrals can also be employed in

the CPHF equations to determine the coefficients Cia.

Solution of the CPHF equations scales like N6. Thus, the

numerical effort for the calculation of EInd
(2) becomes neg-

ligible with increasing N. Starting from a set of appropri-

ately transformed two-electron integrals, note that the

effort for the calculation of all matrix elements (23) scales

only like N4 due to the possibility of contracting two

indices of the two-electron integrals with Dsj and Dsi0 ,

respectively.

Clearly, there is room for improvements of the scaling

behavior. Transforming the CPHF coefficients Cia to a

direct representation in terms of AO basis functions vl, an

operation that scales like N3, one can use them directly in a

contraction with matrix elements Xlm. The latter, formally

also obtained by transforming Xia to the AO basis, can be

directly calculated in steps scaling at most like N4 from AO

two-electron integrals and appropriate transformations of

the inverse overlap matrices D, in a way similar to that

given for S2-expanded exchange-induction energies in

Eq. (14) of Ref. [19]. Furthermore, one could make use of

density-fitting (or resolution-of-the-identity) approxima-

tions, which would bring the scaling of the CPHF proce-

dure down to N5 [19]. For the purpose of this paper,

however, we focused our attention on simplicity of the

code rather than on utmost efficiency.

For the Ar–HF complex, we considered linear geome-

tries with the hydrogen atom pointing toward Ar. The H–F

bond distance was fixed to 0.9169 Å, and interaction

energies were computed as a function of the Ar–H distance

rAr–H. The geometry of the water monomer is characterized

by an H–O bond distance of 0.9716 Å and a H–O–H angle

of 104.69�. The relative orientation of the water molecules

was chosen close to that of the Cs-symmetrical equilibrium

geometry of the dimer [44], fixing the O–H–O angle of the

hydrogen-bridge atoms at 170.04� and varying the inter-

molecular O–H distance rO–H. We used the aug-cc-pVQZ

basis set (from here on denoted as aVQZ) of Dunning and

coworkers in most of our calculations, and, in addition, for

LiF also the aug-cc-pCVQZ basis set (from here on

denoted as aCVQZ) [45–49]. With these basis sets, we also

determined the position rm of the minima (negative inter-

action energies) of the CP-corrected CCSD(T) potential

energy curves and the distances r where these curves cross

the line of zero interaction energy before they become

positive. Note that our use of the symbols rm and r cor-

responds to their usual meaning in the Lennard-Jones

potential energy expression. The corresponding results are

collected in Table 1. In the case of LiF—where the inter-

atomic distances are particularly small—they were

obtained with the aCVQZ basis set correlating all electrons,

while only the valence electrons were correlated in all

other cases.

4 Results and discussion

Let us first discuss the quality of the S2-approximation as a

function of the intermolecular distance for the various

systems investigated here. Figure 1 presents the ratios

Eexch
(1) (S2)/Eexch

(1) and Eexch-ind
(2) (S2)/Eexch-ind

(2) for two fairly

different cases, that is, the neon and the water dimers. The

vertical lines on the r.h.s. in the diagrams of Fig. 1 repre-

sent the minimum rm (cf. Table 1) of the neon-neon and the

intermolecular oxygen-hydrogen distances, respectively.

The region of distances larger than rm will be denoted as

‘‘attractive well region’’ in the following. The vertical lines

on the l.h.s. represent the zero-energy distances r of

Table 1. Distances between r and rm belong to the

‘‘repulsive well region’’. Finally, the range of distances

smaller than r with an exponentially growing interaction

energy will be denoted as ‘‘wall region’’. For Ne2, differ-

ences of the S2-approximated first- and second-order

exchange contributions are hardly perceptible in the

attractive and repulsive well regions. They become sig-

nificant only inside the wall region for fairly small distances.

We note, however, that the relative errors introduced by the

S2-approximation are much more significant for the second-

order exchange-induction energy than for the first-order

exchange energy. This is also observed for the case of the

water dimer–but here already in the attractive well region. In

the repulsive well region, the magnitude of the errors rapidly

grows with decreasing distance: for the first-order energy from

less than 1 % at rm to about 3 % at r and for the second-order

exchange-induction energy from less than 2 % to nearly 7 %.

At a distance of 1.36 Å, corresponding to 0.9r, the errors for

Eexch
(1) and Eexch-ind

(2) amount to about -4 and -11 %,

respectively.

The water dimer is not an exceptional case, as can be

seen from Table 2 that presents the percentage deviations

Table 1 Zero-energy, r, and minimum distances, rm, [in Å ] from

CP-corrected CCSD(T)/aVQZ (and from CCSD(T)/aCVQZ for LiF)

r rm

Ne2 2.82 3.13

Ar–HF 2.21 2.56

(H2O)2 1.51 1.96

HeCl- 2.35 4.02

NeNa? 2.18 2.53

LiF 1.00 1.57
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of the S2-approximated from the exact exchange energy

contributions at 0.9r, r, and rm for all systems investigated

here. In the neighborhood of r, the case of HeCl- is

comparable to that of water, though the deviations at rm are

negligible due to the large minimum distance for this

complex containing an extended anion. The extreme case is

Li?F-, where the S2-approximated Eexch-ind
(2) reproduces

only two-thirds of the exact value at r. The cases of Ar-HF

and NeNa?, on the other hand, are more comparable to the

case the neon dimer, with errors of at most 1 % throughout

the entire well region for both, the first- and the second-

order exchange contributions. Let us note, however, that

for all of the investigated systems and throughout the entire

distance range, (i) the exchange contributions are always

positive, (ii) S2-approximated values are always smaller

than the exact ones, and (iii) the S2-approximation is sig-

nificantly worse for Eexch-ind
(2) than for Eexch

(1) (cf. Fig. S1 and

Tables S1–S7 of Online Resource 1). In view of the last

point, caution should be applied as to conclusions on the

validity of the S2-approximation based on first-order results

alone.

On the other hand, the first-order exchange contribution

in general is larger than the second-order exchange-

induction contribution, as shown in Table 3. For example,

at 0.9r the former is roughly two to five times larger.

Nevertheless, that does not mean that the errors in

Eexch-ind
(2) could be neglected: since the latter at 0.9r are a

factor of two to three larger than the errors in Eexch
(1) (cf.

Table 2), the total errors are in the same order of magni-

tude. Fig. 2 directly compares the S2-approximated inter-

action energies to their non-approximated counterparts for

the examples of the neon and the water dimers. Please

remember that interaction energies considered here do not

contain the dispersion and exchange-dispersion contribu-

tions, which means that (i) no minimum is observed for the

dispersion-bound neon dimer and that (ii) for the water

dimer, the minimum is found at a larger distance than the

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 2.5  3  3.5 4

E
(S

2 )/
E

r [Å]

Ne2

E(1)
exch

E(2)
exch−ind

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.5  2  2.5  3  3.5

E
(S

2 )/
E

rO−H [Å]

(H2O)2

E(1)
exch

E(2)
exch−ind
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Table 2 Deviations [in %] of S2-approximated to exact Eexch
(1) (in each

first line) and Eexch-ind
(2) (in each second line) at 0.9r, r, and rm

0.9 r r rm

Ne2 -0.07 -0.02 -0.01

-0.15 -0.05 -0.01

Ar-HF -0.83 -0.41 -0.12

-2.00 -1.01 -0.31

(H2O)2 -4.32 -2.73 -0.68

-10.63 -6.84 -1.75

HeCl- -3.08 -1.59 -0.02

-9.26 -4.79 -0.05

NeNa? -0.38 -0.15 -0.03

-0.83 -0.30 -0.05

LiF -18.73 -13.03 -1.68

-48.29 -33.53 -3.80

Table 3 Non-approximated energy contributions [in kJ/mol] Eexch
(1)

(in each first line) and Eexch-ind
(2) (in each second line) at 0.9r, r, and rm

0.9 r r rm

Ne2 4.329 1.213 0.271

1.085 0.264 0.050

Ar-HF 36.60 16.30 4.148

13.81 5.40 1.114

(H2O)2 239.0 138.9 27.92

87.2 44.6 6.58

HeCl- 132.0 64.21 0.611

23.6 10.20 0.089

NeNa? 37.00 12.66 2.027

21.78 7.51 1.287

LiF 2,648 1,703 178.3

999 694 136.5
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minimum extracted from CCSD(T)/aVQZ which is indi-

cated in the figure as a vertical line. In view of the dis-

cussion in the preceding paragraphs, the differences in the

performance of the S2-approximation for the two systems

can hardly be surprising: for Ne2 the S2-approximation is

excellent even for large portions of the wall region, while

for the water dimer, significant deviations from the exact

values are already seen in the repulsive well region.

Fig. S2 of Online Resource 1 demonstrates that the latter

is also the case for LiF, while Ar-HF and NeNa? are more

comparable to Ne2 in this respect. While in the case of

HeCl-, the S2-approximation performs well in the entire

well region, in the wall region a peculiarity is observed: at

an interatomic distance of about 1.5 Å, that is, at about

two-thirds of r, the S2-approximated energy shows a

maximum. This is an obvious failure of the S2-approxi-

mation in a distance region where the non-approximated

interaction energy shows the expected exponential

increase.

The consequences of various stages of the S2-approxi-

mation on d(HF) values obtained with them are exempli-

fied in Fig. 3. Approximating both Eexch
(1) and Eexch-ind

(2) , we

start to see differences to the exact value already at the

minimum distance of the water dimer, and only 67 % of

the exact value is reproduced at the zero-energy distance r.

This improves when only Eexch-ind
(2) is approximated: now

86 % of the exact value are reproduced at r. On the other

hand, since the magnitude of d(HF) is larger than that of

its approximations, calculating Eint with S2-approximated

HF-SAPT yields results that are closer to the CP-corrected

supermolecular HF interaction energies over the entire

range of distances considered here. Nevertheless, the

observation that in one of the approximations d(HF) attains

a minimum at an O-H distance of about 1.4 Å is suspicious.

In fact, for the neon dimer, where one has to look deep

inside the wall region to see noticeable differences between

the exact and the approximated d(HF) values, one finds

minima for both approximations - and in particular the
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example of the ‘‘full’’ approximation for both Eexch
(1) and

Eexch-ind
(2) demonstrates that for very small interatomic dis-

tances, the approximated values will become larger in

magnitude than the exact value. Furthermore, one

observes a change of sign in the approximated values with

decreasing distance, whereas the non-approximated d(HF)

displays a monotonic behavior. As demonstrated in Fig.

S3 of Online Resource 1, this is also the case for most of

the other systems considered. Again, the case of LiF is a

more extreme variant of that of the water dimer, while Ar-

HF and HeCl- resemble Ne2. A somewhat exceptional

case is that of NeNa?, where even the non-approximated

d(HF) correction attains positive values in the repulsive

wall region, while it is negative in all other cases. This is

most likely due to a missing third-order energy contri-

bution in our HF-SAPT Eint: while in a point-multipole

model of the atom-ion interaction such a third-order term

does not occur, it is present in SAPT due to the full

consideration of atomic charge distributions and charge-

density response functions [39, 40]. As a third-order

contribution, its sign should be sensitive to the sign of an

overall charge on one (or both) of the interacting mono-

mers, so that one would expect a differing sign for it when

comparing NeNa? with HeCl-.

Third-order SAPT induction contributions have recently

been implemented by Patkowski, Szalewicz, and Jeziorski

and compared to the d(HF) higher-order induction contri-

butions estimate [39, 40]. It was found that the sum of the

third-order induction plus exchange-induction contribu-

tions differs significantly from d(HF) at the equilibrium

geometries of some neutral intermolecular complexes,

while for large intermolecular separations, excellent

agreement was observed when orbital relaxation effects

were taken into account. The second- and third-order

exchange-induction energies calculated by Patkowski et al.

were obtained within the S2-approximation. As shown

above, with the S2-approximation for the second-order

exchange-induction energy, the magnitude of d(HF) in

general is underestimated, if it is a negative number, as was

the case for all systems considered in Refs. [39, 40]. Since

in the examples given there, the sum of the third-order

induction plus exchange-induction contributions always

represents only a fraction of d(HF), the disagreement

becomes even larger when compared to the non-approxi-

mated d(HF). For example, the sum of the third-order

contributions was found to be -1.30 kJ/mol at the equi-

librium geometry of the water dimer, while d(HF) is given

as -3.42 kJ/mol in Ref. [40]. The latter value is in good

agreement with our two different S2-approximations which

yield -3.54 (approximation for first and second order) and

-3.73 kJ/mol (only second order approximated), respec-

tively, for our somewhat different (H2O)2 equilibrium

geometry. Our non-approximated d(HF) correction finally

amounts to -3.84 kJ/mol. Very recently Lao and Herbert

have expounded that the third-order exchange-induction

contribution for induction-dominated dimers seems to be

dramatically underestimated with the S2-approximation at

short intermolecular distances [50] and have recommended

to alternatively use the d(HF) correction for determining

full potential energy curves. Our results explicitely support

their conclusion that going beyond the S2-approximation is

even more important for higher-order than for first-order

exchange contributions. Furthermore, the observation that

eliminating the underestimation of the third-order

exchange-induction energy would lead to an even larger

discrepancy with d(HF) at the equilibrium geometry of the

water dimer indicates that fourth- and even higher-order

induction and exchange-induction contributions become

significant here. This is another reason to support the

finding [50] that calculation of d(HF) cannot be avoided

even if third-order results are available.

As a final point, let us comment on the importance of

core-polarization for the exchange contributions. This was

investigated for the case of the LiF molecule since we

expected effects of core-polarization to be most visible in

this case due to the small values for rm and r found here.

Even when the aCVQZ basis set, strictly speaking, was

designed to account for core-valence electron correlation

rather than for core-polarization, a comparison of the HF-

SAPT energy contributions determined with it to those

from the aVQZ basis set will give us valuable hints: in fact,

it was found that for distances smaller than 3.0 Å, all SAPT

contributions deviate by 0.5 % at most (cf. Tables S6 and

S7 of Online Resource 1). Interestingly, the induction

energy is the only contribution that starts to deviate by

more than a percent for larger interatomic distances, indi-

cating that the polarizabilities are influenced by the pres-

ence of the core-valence correlation functions in the basis

set. The strongest influence of the basis set is found for

total interaction energies in the neighborhood of r, of

course, where the individual energy contributions cancel

out. At larger r, on the other hand, the total interaction

energies agree very well due to the increasing dominance

of the electrostatic interaction between the ions with

increasing distance.

5 Conclusions and outlook

In summary, we have derived and implemented an

approach to evaluate second-order exchange-induction

SAPT energies for single-determinant monomer wave-

functions, which is correct to all orders of the intermono-

mer overlap S, that is, taking multiple electron exchange

between the monomers into account. The approach can be

formulated such that it scales with the fourth power of the
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system size, once the coupled-perturbed Hartree-Fock

coefficients determining linear response of the ground state

are available. We have used the method to investigate the

performance of the S2- or single-exchange-approximation

to Eexch-ind
(2) at the HF-SAPT level. For all of our test sys-

tems and all distances between them, it was found that the

errors introduced by the S2-approximation are more pro-

nounced in Eexch-ind
(2) than in Eexch

(1) , typically by factors of

two to three. The S2-approximation systematically leads to

an underestimation of the invariably positive exact

exchange contributions. While this underestimation is

below 1 % and thus negligible throughout the entire well

regions of Ne2, Ar-HF, and NeNa?, it exceeds a few per-

cent in the repulsive part of the well regions of (H2O)2,

HeCl-, and Li?F-. In the repulsive wall region at small

intermolecular distances, where the CCSD(T) interaction

energies are positive, the deviations may become very

significant: for LiF as our most extreme example, the

S2-approximated Eexch-ind
(2) reproduces only about half of the

exact value at a distance of 0.9 Å, that is, 90 % of the

distance r where the CCSD(T) potential energy curve

starts to become positive. As a consequence, S2-approxi-

mated HF-SAPT interaction energy curves are too shallow

in the repulsive well and the wall regions, and this effect is

already significant for the water dimer as a representative

for hydrogen-bridged systems. Furthermore, the use of the

S2-approximation may have a notable effect on the calcu-

lated values of the d(HF) estimate of higher-order induc-

tion and exchange-induction energies, as exemplified by

the wall region of HeCl-, (H2O)2, and LiF, and the

repulsive well regions of the latter two systems. With the

exception of NeNa?, it was found that the non-approxi-

mated d(HF) shows a monotonic behavior with decreasing

distance while sign changes are observed when the

S2-approximation is employed for the first-order and/or

second-order exchange contributions.

Clearly, the approach presented here can also be used in

the framework of DFT-SAPT, employing the Kohn-Sham

determinant and the linear coupled-perturbed Kohn-Sham

perturbation wavefunction. Furthermore, it can be extended

to exchange-dispersion energies. One should note that

while DFT-SAPT is able to take intramonomer electron

correlation effects on the non-exchange contributions into

account in a potentially exact way, this is not the case for

the exchange contributions [14]. Therefore, any DFT-

SAPT variant can only be an approximation, and one has to

test its quality. We have derived and implemented a DFT-

SAPT method that includes non-expanded second-order

exchange-dispersion energies and checked its performance

by comparison to high-level CCSD(T) and some MB-

SAPT results. This will be the topic of a forthcoming

publication.
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